найдите площадь полной поверхности правильной четырехугольной пирамиды, в которой высота 12, а апофема 13 см
Ответ
5
(1 оценка)
1
Ответ:
У нас есть правильная четырёхугольная пирамида SABCD (S вершина),в основании которой лежит правильный четырекутник (квадрат).Также у нас есть апофема,проведеная з вершини S боковой грани и высота пирамиды.
1)Проводим от нижней точки высоты до боковой грани радиус правильного квадрата
2)Ищем сторону ОК из трехугольника SOK за теоремой Пифагора:
OK²=SK²-SO²
OK²=13²-12²
OK²=169-144
OK²=25
OK=5 ( см)
3)Далле если мы нашли радиус,то согласно правилу:
Радиус вписаной окружности в квадрат равно половины его стороны
r=a/2
отсюда
а=2r
a=5×2=10 (см)-сторона квадрата
4)Находим площадь основания квадрата
S=a²
S=10²=100 (см²)